If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2+8=50
We move all terms to the left:
x^2+2+8-(50)=0
We add all the numbers together, and all the variables
x^2-40=0
a = 1; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·1·(-40)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*1}=\frac{0-4\sqrt{10}}{2} =-\frac{4\sqrt{10}}{2} =-2\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*1}=\frac{0+4\sqrt{10}}{2} =\frac{4\sqrt{10}}{2} =2\sqrt{10} $
| 4+1/3x=4/6+4/2x | | X^2+x-29=1 | | 6+6x-1=9x-1 | | 5+a/2=9 | | (x^2)*(8+3)-12=0 | | z/2-3=8 | | 4x+2/9=10 | | 25(x-8)=250 | | 3x^2-56x+98=0 | | 8x+2(5-x)=3(2x+3)+1 | | 54+c-19+c-3=180 | | x^2*(8+3)-12=0 | | 3(-3r+8)=34-7r | | -96=10x+4 | | -1/2x-7/4=3/8 | | 3/6n=10 | | 9x+1=1/27 | | 4.9t^2-7t+100=0 | | 1+3/2p=11/5 | | -2x-3=-5x+9 | | 1.25c=6.5 | | 86+93+x/3=90 | | 86+93+x=90 | | .3333333333333333333333333333333333333333333n=10 | | 0=4.9t^2-7t+100 | | 4/5x-1/3=7/17 | | 63)h=160 | | 1.8g=5.5 | | 19p+1.50=15p+2.75 | | 54+c-19=180 | | 100x=0,001 | | 1.5x-2.25=8 |